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The propagation of waves in an unbounded ideal elastic-plastic medium was examined 

in [l-4]. 
The behavior and laws of reflection of elastic waves were studied well and presented 

in [5, 61. 
The problem of wave reflection in a hardening elastic-plastic medium is examined 

below. A plane-polarized equivoluminal shock wave propagates in a hardening elastic- 

plastic half-space which is assumed to be free of stresses at the boundary, The incident 
wave forms an angle 9 with the boundary plane. 

Analytical expressions are obtained for the stressed and deformed states in the plastic 
regions behind the front of the reflective wave. Calculations performed on a digital 
computer allowed us to determine the extent of these regions and changes of these 
regions as a function of the angle of incidence cp and parameters of material hardening. 

1, Let us examine a shock wave in the form of a step which propagates in an elastic- 

plastic linearly hardening body. Ahead of the wave front the material is assumed to be 

at rest (vi = 0, Uij = 0, ei+' = 0). Behind the 
wave front Ut = vs = 0, vg = v. 

Here vi is the velocity of displacements, (sij are the 
stresses, eijP are the plastic deformations and v=const. 

The axis zais assumed to be parallel to the line of 
intersection of the free surface (plane) with the front of 

the incident wave OA. The axis x1 is orthogonal to us 
and parallel to the plane of the incident wave (Fig. 1). 

From conservation of momentum it follows that behind 

Fig. 1 the wave front OAwe have for components of stress 

5 
-0, j23= --dGv 

13 - (1.1) 
Here p is the density of the material and l_t the modulus of elasticity. 
The material behind the front of the incident wave is in the elastic state if 1 (Tz3 1 = 

= 1 I/G v 1 < k, where /i is the yield stress in simple shear. 
For ll/Fp V I > k (this is possible in the case of a sufficiently intensive shock on 

the half-space) the material behind the wave front at the initial moment of time is in 

the plastic state. Subsequently the front of the plastic wave releases an elastic precursor 
on which I oz3 I =~- Ifi) J’ 1 1 k in the case of a plane wave. If the body has a 
free surface, the elastic precursor is first to reach it. Consequently we will assume in the 
following that 

pp V* < k2 (1.2) 

46 
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Then the plastic deformations are equal to zero behind the front of the incident wave. 
If the material after the reflection of the wave from the free surface remains elastic, 

the reflected wave will also have the form of a step. The vector of the normal to the 
reflected wave OB has the components 

Ye = sin 29, T: = - cos 2qJ (1.3) 

Behind the front of reflected wave OB we obtain from conservation of momentum 

%:= l/lp I2731 sin 2q, a,, = - dj@V - fz [us] cos 29, 2’S = I’ -- 1~~1 

(1.4) 
The normal to the free surface has the components n, = sin 9, and n2 = - COS Cp. 

The condition on the free surface 00, has the form 

ols sin Cp - a23 COSCp = 0 (1.5) 

From this [u,] = - v and relationships (1.4) are now written in the form 

(T13 = - v/clp V sin 2q1, crT3 = 1/LLp V (cos 217 - I), v3 = 2V 

Computing the intensity of stresses behind the wave front OB, we obtain 

(J132 + (5232 = 4pp V2 sin2 cp (1.6) 

Since V satisfies the inequality (1.2). the maximum shear stress does not exceed k, 
if (p < ‘/sx. If cp > ‘/sn, then the material behind the wave front OB can transform 

into the plastic state. In this case the solution constructed above is not applicable. 

2, Just as in the case of the elastic material it is possible in the search for a solution 
of the elastic-plastic body is written in the form 

011 = 012 = 022 = 033 = 0, eI1 = e12 = ez2 = e33 = 0, ul = Uz = 0 

and that the quantities (~1~~ crz3 and v,do not depend on x3. 

The system of equations describing the behavior of a hardening elastic-plastic body 
is written in the form 

69, i -p13 = 0, (k + rx)e$ = (6i3 - q&)x* 

x* = (e$f$~)'l7, Gi3' = pV3,i - 2pe$ (2.1) 

Here i = 1, 2 . The rule of summation over recurring indices is adopted. The dot 
indicates partial differentiation with respect to time, r and Q are parameters of harden- 

ing. 
In the study of reflection of waves from a free surface we can assume that (Sigr ei,” 

v3 and x depend only on Xi - ct _- 
a = al%lg 

X1- ct ctg (p ’ c = 1/pp (2.2) 

In this connection the system of equations (2.1) assumes the form 
- 

513 - ’ clga52s’+1/pp (ctg’f-cCIga)U3’=0 

(5i:1 - qeb) X’ - (k + TX) e$ == 0 iZ.3) 

(G,13’ + apey;) (ctgcp - clga) + 1/EL$ = cl 

(5,,‘+ 2ver[)(cIg(P-ctga) - I/PO clgau,‘= 0 

1~’ = (&ell;)‘lz (2.5) 

Here the prime indicates the derivative with respect to Q. 



48 1’. A. Uaskakov and c;. I. Bykovtsev 

Substituting the values of 3t’ from (2.4) into (2.3), we obtain 

(5::1 - (Ic’$) (G1:: - qf?$) :-- (k + I.%)” (Z..>) 

The relationship (2.5) determines the form of the surface of loading. It is assumed 
that there are two mechanisms of hardening: the kinematic and isotropic mechanism. 

Differentiating equations (2.5) with respect to Cr., we find 

(5;,; - c&) (51s - &;) - r (k + rx) X’ = 5) (Z!.(i) 

The system of equations (2 3) and (2.6) has the nontrivial solution 1.7~ :+‘, I$, us’ 

under the condition that 

lclg CL (or3 - r/~?$) ;- (o.,:r - &Jl’ - (ii -: I.%)” :~ 

:: [(clg t+Y - ctgay (a--r 1) --a (cl,g’a -:-- I)1 0 f2.7) 

n -: (r -I- (7) / 2p > 0 

Satisfying the condition (2.5) through the substitution 
P 

013 - qe13 - - (k j- m) cos 11 (L!.(S) 

0 2:i - (I$3 _.~ - (k -I- rx) sin 11 

the relationship (2.7) is transformed into 

cos (o - $1 _ ((1 + u) sin:$, e - 0j”” -= ‘1 (a) (2.9) 

The relationship (2.9) determines $ as a function of CL. Solving Eqs. (2.3) and (2.6) 
for the condition (2.9), we obtain 

The meaning of c~rwill become apparent in the course of subsequent analysis, (‘ is a 
constant of integration. The remaining unknown quantities o;s, eh, (‘3 are expressed 

in terms of x, and 4 in the form 

P- I 
e13 - 

J (k + rx) cos $ (r’ + sin (3 - $)) da + C 
c %+r+q e COS (a - qI) 

1 

a, 

a P- 
I 

ea3 -- c w++++ c 

(k + 4 sin 11) (rl’ + sin (a - $1) da + c 

cos (2 - ql) 2 (2.11) 
ai 

c 
(k + ‘7~) sin (a - o)(q + sin (r - Q)) da + 

sin 2 (a - $) 
C 

3 

,‘I 

and through Eqs. (2. 8) ; C,, C,, c, are constants of integration. 

3. In determination of the solution for the problem of wave reflection (1.1) in an 
elastic-plastic material the free surface is a source of a whole packet of waves. This is 
a neutral shock wave which can propagate only with the velocity c = Jfl.r, / p and 

therefore coincides with the location of the reflected shock wave OB in the elastic 
case. On this wave the plastic deformations are continuous. 

Behind the front of this wave (neutral region: oi3 = const, ri:rP = H. = 0) the 
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stresses are determined from Eq. (1.4) where the intensity of the wave fv,] should be 
determined from the condition of plasticity, so that 

[t’s] = - V (COS %p t vzs - sin2 2cp), z2 = k2 / ppV2 (3.1) 

The components of stress take the form 

613 = - IriG v sin 2y (cos 29 :tr: fz” - sin2 29~) (3.2) 

a23 = - fj@ v [I - cos 2~ (COS 2g, + f/22 --- sin2 2iji - 

The state of stress (3.2) occurs when 29 2 a > a,. The angle a = a, determines 

the location of the reflected plastic stress wave M’. From the continuity of stresses for 

a = a,, we obtain that al must satisfy the system of equations 

2 cos 4 = sin 29 (cos 2rp * l/‘za -- sin2 2rp) 

zsing = 1 - cos %p (cos 2fp i_ fzz - sin2 2cp) 

cos (a1 - 4)) = ri (%) 

(3.::) 

The plastic wave OC propagates with the velocity cr < c, The velocity cr can be 
determined from Brewster’s law 

cl sin p, = c sin (a, - cp) (3.4) 

On the other hand, the velocity can be determined from the system of equations (2.1) 
at the discontinuities for the condition that e?s = x = 0 and with application of kine- 
matic conditions of coincidence of the first order, In this manner we obtain that 

c1 = c v’l - (si3 ~$1))~ k-2 (1 + a)-’ (3.5) 
Mere cri3 satisfy (3.2) and y!r) are components of the vector normal to the front of 

the wave OC (VI” = sin cci, VP’ = - cos a,). 

It is easy to show that taking into account (3.5) the relationship (3.4) is equivalent 
to system (3.3). 

For al >, a > aa solutions (2. Q(2.10) and (2.11) are applicable. Here the con- 
stants C, C,, C,, C, are determined from the condition of continuity of solution for 
a = a,, We obtain 

__- 
C = ktf (cQ), C, = C, = 0, C, = V [I + (cos 2(p i_ v 2 - sin2 2y)l (3.6) 

For a2 > cx > (p (Fig. 1) the following trivial solution holds 

o13 = [qe,,P - (k + m) Cos$l~-~l~ 
(3.7) 

(T33 =; lqe$ - (h + TX) sin $]l__2z 

The angle a = a2 determines the location of the reflected plastic wave of relaxa- 
tion OD. 

The value of u2 is determined from the condition of continuity of stresses on the relax- 
ation wave 0.D and the boundary condition (1.5). We obtain 

Knowing u2,the velocity c2 for the propagation of wave OD is determined from the 
relationship c2 sin’q = c sin (a* - cp) 

The value of arfor z -- 1 (on reflection of the elastic precursor) were computed 
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on a digital computer for various values of a and are presented in Table 1. For each 

value of a and cp in Table 1 two values are given. The upper value corresponds to the 

plus sign in Eqs. (3.3) and the lower value to the minus sign. In Eq. (2.9) the plus sign 

is always selected for the root, because only in this case a2 > 9. 

Table 1 

a 

0 

0.1 

0.2 

0 .3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

10 

10” 

10s 

a 

ii 
012 
0.3 

:*; 
0:6 
0.7 
0.8 
0.9 
1.0 

:ooz 
103 

T 
- 

- 

- 

- 
30’ 40” 

56.56 79.36 
53.79 79.14 
56.83 79.41 
54.65 79.23 
57.05 79.46 
55.28 79.31 
57 ‘15 
55:78 

79.50 
79.37 

57.4.; 79.5:3 
M. 1X 79.42 
5i.57 59.56 
56.51 79.46 
57.70 79.58 
56.78 79.49 
57.8~ 79.61 
57.02 79.53 
57.93 79.6~ 
57.23 79.56 
58.03 79.64 
57.40 79.58 
58.14 79.66 
57.56 79.61 
59.62 79.93 
59.61 79.93 
59.96 79.99 
59.96 79.99 
59.99 79.99 
59.99 79.99 

30’ 40’ 

- 

56.56 72.77 87.55 100.83 113.38 124 54 
56.83 73.22 88.21 101.89 114.40 1x5:88 
57.05 73.6ti 88.88 lOZ.80 115.50 1:; .09 
57.25 74.05 89.48 103.60 116.48 l“8.10 
57.42 74.38 90.04 104.33 117.38 1x9 “0 
57.57 74.69 90.5U 105 .OO 118.21 130: 13 
57.70 74.96 90.94 105.60 118.97 IL31 .OO 
57.82 55.20 91.33 106.16 119.67 131.81 
57.93 75.43 91.70 106.68 120.33 13Z.55 
53.03 75.62 92.04 107.16 I”0 94 

75.80 92.34 107.61 121:50 
133. “-5 

58.12 133.92 
59.63 ‘is.12 98.27 116.92 134.71 150.x 
59.96 79.89 99.80 119.63 139.38 158.51 
59.99 i9.99 99.99 119.98 139 95 159.90 

50” 

98.69 60.00 84.53 
99.14 llZ.91 122.46 
98.84 87.59 89.2: 
99.21 113.32 123.24 
98.96 95.27 93.34 
99.26 113.68 123.94 
99.06 39.77 96.97 
99.31 114.00 124.58 
99.14 102.79 100.15 
99.36 114.29 125.17 
99.21 105.00 102.96 
99.39 114.55 li5.70 
99.26 106.68 105.43 
99.43 114.79 129.19 
99.31 108.02 107.63 
99.46 115.01 1’6.66 
99.35 109.11 109.59 
99.49 115.21 127.08 
99.39 110.01 111.34 
99.51 115.39 127.48 
99.43 110.77 112.91 
99.53 115.56 127.85 
99.91 118.80 135 .65 
99.91 118.96 136.49 
99.99 119.88 139.54 
99.99 119.88 139.56 

100.00 119.98 139.95 
100.00 119.98 139.95 

-00 

600 

60' 

- 

- 
700 80’ 

- 

- 

109.74 
119.48 
112.06 
130.59 
144.15 
131.58 
116.06 
132.50 
117.81 
133.34 
119 4:’ 
134% 
120.90 
134.84 
l”2.26 
135.52 
123.53 
136.15 
l“4 70 
136: 74 
125.81 
137.29 
150.13 
151.2 
158.66 
158.7% 
159.89 
159.89 

70' ho 

Table 2 

900 

135.00 
135.00 
136.36 
136.36 
137.61 
135.61 
138.75 
138.75 
139.80 
139.80 
140.7i 
140.77 
141.67 
141.67 
142.51 
14“ 51 
143:30 
143.30 
144.04 
144.04 
144.74 
144.74 
1fI3.24 
153.24 
174.35 
174.35 
178.34 
178.34 

- 

- 
90’ 

______ 

135.Ul) 
136 .Xi 
137.61 
138.75 
139.80 
140.77 
141.67 
142.51 
143.30 
144.04 
244.74 
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Values of aafor z = 1 and various a are presented in Table 2. The values of a2 were 
computed from Eq. (3.8) by the method of successive approximations. As a preliminary 
step the equation sin ($ - q) = 0 was solved. From this the value of a2was com- 

puted and then the value of the integral in Eq. (3.8) was determined. To find the second 

approximation, the following equation was solved 

(k + Iw) sin (9 - cp) =I[a (1 +a)-l- PI 

where 1 is the value of the integral for a,,determined from the first approximation, etc. 

Computations showed that all subsequent approximations practically agree with the 

first approximation. Consequently, in Table 2 only one value of a,is presented which 
corresponds to the signs plus and minus in Eqs. (3.3). 

In Figs. 2 and 3 values of ai’, ar- and a2 are shown for a = 0 and a = 1. Analog- 

ous graphs are applicable in all other cases. 

Fig. 2 Fig. 3 Fig. 4 

We note that it follows from Tables 1 and 2 that for increasing a all curves get closer 
together. For a = 100 and a = 1000 the curves practically coincide and are equal 
to 2q. 

We note that the values a, determined from Eqs. (3.3). and the quantities a2 computed 

from (3. 8) must satisfy the inequality cp < a, Y< a, & 29, because in the opposite 
case the relaxation wave will overtake the stress wave. 

The conditions cp < aa < 2~ and ‘p < ur < 2rp are always satisfied. 
Let a, =- a2, then 

4 (1 i_ a) {sin2 cp [l + sin cp (1 + (cos 29 2 co.7 2q))12 - 
- co9 (0 (1 - (cos2r+? 2 cos2rp))“}= (3.9) 

= sin? 29 (1 - (cos 29-1 + cos 2~))’ - 

Equation (3.9) determines the dependence of cp on a in the cases where a1 = a,. 
In Fig.4 two branches are constructed. These correspond to solutions of Eq. (3.9) when 
the signs plus and minus are selected. 

From data presented in Tables 1 and 2 it follows that if the point (a, rp) is located 

to the left of the curve A B, then the condition a2 < a, is satisfied only when the 
plus sign is selected in Eqs. (3.3). 

If the point (a, rp) is located to the right of the curve CD, then the condition 
c~i > CL2 is satisfied only when the minus sign is selected. 

We note that if in Eqs. (3.3) the minus sign is applicable, then surfaces of strong 
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discontinuity do not exist in the packet of reflected waves. 
If the point (0, q) is located between the curves 11 /I and (‘I), then both solutions 

can be realized. 

In the solutions constructed above it was assumed that in the packet of reflected waves 

there can be only one shock wave 011 which is neutral, i.e. the plastic deformations on 
the front of this wave are continuous. In the general case with plane-polarized motion 

in a linearly-hardening medium plastic shock waves can exist and have fronts on which 

the plastic deformation suffers a discontinuity. For the existence of a plastic shock wave 
it is necessary that the following relationship holds ahead of the wave front 

1Iere Sij are components of the stress deviator. 

In the case which is under examination the relationship (3.10) can be represented in 
the form c tii3 = qelll + (k + r3c) VP) (3.11) 

Here Y?) are components of tilt: vector normal to the front of the shock wave($) =T 
(3) 

=sinU,,Ys =- COS a,). The angle a = as determines the location of the shock 
wave. We will show that the conditions ot existence of wave (3.11) cannot be satisfied 

in the case of reflection from a free surface. 
We can show that the shock wave CL : a:3 propagates with the velocity 

c3 =: 1/!‘1 ‘I’, !‘I =- pn (1 + u)-’ 

From the relationship (3.4) written for the shock wave v, a 3 we obtain the equa- 
tion for the determination of its position 

cos (* - c(s) z~- 11 (C%:J 0 (XlZ) 

Just as in the case of the solution analyzed above, the waves OB, OC, OD propa- 
gate ahead of the front of the shock wave. The position of waves OB and OC remains 

unchanged. The position of the relaxation wave OD must now be determined from the 
condition (3.11) which in combination with relationship (2.8) can be represented in the 

form sir1 (cLQ - as) -7 COS ($ - CC?) (3.13) 

Here a -- uz determines the location of the relaxation wave OD. 
It is evident from (3.13) that the relaxation wave OD either coincides with the elas- 

tic shock wave because a, L c%~ is a solution of this equation, or it is determined (after 

some transformations) from the following equation taking into account (3.121: 

(sin’ 9; - a - 1) tg (u2 - cp) =m~ (sin2 cp + a + 1) tg (as - cp) (3.14) 

However, the values a,determined from (3.14) do not belong to the interval [Cp, 2v1 
and therefore they rllust be discarded. 

Let us examine the first root a2 =T as. It was shown above that for a, >/ a > az 

the solution (2. 8). (2. lo), (2. ll), (3.6) is valid. The relationship (2.10) can be repre- 

(3.15) 

Let us examine the quantity /C -I- rx. for a = as. The improper integral 
a, 

SC 
al 
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converges. The quantity 7 (a3) becomes zero according to (3.12). From this we obtain 
that 1: + I^X grows without bounds for a -+ a3. 

From (2.8) and (2.11) it follows that oi39 eig* , Us also grow without bounds for 
a -+ a3. 

Thus, if one considers only the bounded solutions in the packet of reflected waves, 
then a reflected plastic shock wave does not exist. 
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ON AN EFFECTIVE METHOD OF SOLVING NONCLASSICAL 

MIXED PROBLEMS OF THE THEORY OF ELASTICITY 
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An integral equation of the first kind with a difference kernel having a logarithmic sin- 
gularity is studied between finite limits. Many plane and three-dimensional mixed prob- 
lems of elasticity theory and mathematical physics reduce to such integral equations. 

A method is proposed for the effective solution of this equation for small values ofthe 

characteristic dimensionless parameter h in the kernel. The principal part of the solu- 
tion is extracted for small h and the residual is sought in the form of some series of 

Laguerre polynomials. A certain infinite algebraic system is obtained to determine the 
coefficients of this series. An approximate solution of the integral equation with isolated 
characteristic singularities is found by truncating this system. 

As illustrations, problems on the effect of a strip stamp on an elastic half-space and 
the impression of a stamp into an elastic strip are considered. 

Certain papers of Popov [l-3] were the impetus to the development of this method. 


